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This paper addresses the problem of damage detection and localization in linear-form

structures. Principal component analysis (PCA) is a popular technique for dynamic

system investigation. The aim of the paper is to present a damage diagnosis method

based on sensitivities of PCA results in the frequency domain. Starting from frequency

performed to determine the main features of the signals. Sensitivities of principal

directions obtained from PCA to structural parameters are then computed and inspected

according to the location of sensors; their variation from the healthy state to the

damaged state indicates damage locations. It is worth noting that damage localization is

performed without the need of modal identification. Influences of some features

as noise, choice of parameter and number of sensors are discussed. The efficiency and

limitations of the proposed method are illustrated using numerical and real-world

examples.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A dynamic transformation, resulting from a variety of causes, e.g. structural damage or nonlinearity onset, may disturb
or threaten the normal working conditions of a system. Hence, questions of the detection and localization of those events
have attracted the attention of countless engineering researchers in recent times. The detection and localization of the
damage allow to reduce maintenance costs and to ensure safety.

In the last decade, the problem of damage localization has been approached from many directions. Often based on
monitoring modal features, these processes can be achieved by using an analytical model and/or promptly by
measurement. Damage can cause change in structural parameters, involving the mass, damping and stiffness matrices of
the structure. Thus many methods deal directly with these system matrices. The finite element method (FEM) is an
efficient tool in this process [1]. The problem of detection may be resolved by this method through model updating or
sensitivity analysis. For damage localization and evaluation, model updating is utilized to reconstruct the stiffness
perturbation matrix [2]. This may be combined with a genetic algorithm [3] or based on modal parameter sensitivity [4].
Damage in the highway bridge was identified in [5] by updating both Young’s modulus and the shear modulus using an
iterative sensitivity based FE model updating method. In these cases, a well fitted numerical model is essential to compare
with the actual system.
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Nomenclature

dI , dII first and second derivatives of the vector D
H FRF matrix
K, M, C stiffness, mass and damping matrix
p vector of parameters
U,V,R matrices of left and right singular vectors and

of singular values
X observation (snapshot) matrix

Greek letters

ak
ji,b

k
ji projection coefficients

D, Dnorm sensitivity variation and normalized sensitiv-
ity variation

o angular frequency
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Methods using measurement are also widely used because of their availability in practice. Yan and Golinval [6]
achieved damage localization by analyzing flexibility and stiffness without system matrices, using time data
measurements. Koo et al. [7] detected and localized low-level damage in beam-like structures using deflections obtained
by modal flexibility matrices. Following localization, Kim and Stubbs [8] estimated damage severity based on the mode
shapes of a beam structure. Yang et al. [9] localized damage by computing the current stiffness of each element. They used
Hilbert–Huang spectral analysis based only on acceleration measurements using a known mass matrix assumption. Rucka
and Wilde [10] decompose measured FRFs by continuous wavelet transform (CWT) in order to achieve damage
localization. Based also on CWT, Bayissa et al. [11] analyze measured time responses to extract the principal structural
response features. Then the combination with the zeroth-order moment (ZOM) allows to detect and localize damage in
a plate model and a full-scale bridge structure. Cao and Qiao [12] recently use a novel Laplacian scheme for damage
localization.

Other authors have located damage by comparing identified mode shapes [13] or their second-order derivatives [14] in
varying levels of damage. Sampaio et al. [15] extended the method proposed in [14] through the use of measured FRFs. Not
consider only the FRFs in low-frequency range, Liu et al. [16] use the imaginary parts of FRF shapes and normalizing FRF
shapes for damage localization. Their method was illustrated by a numerical example of a cantilever beam.

Natural frequency sensitivity has also been used extensively for the purposes of damage localization. Ray and Tian [13]
discussed the sensitivity of natural frequencies with respect to the location of local damage. In that study, damage
localization involved the consideration of mode shape change. Other authors [17–19] have located damage by measuring
natural frequency changes both before and after the occurrence of damage. However, such methods, based on frequency
sensitivity with respect to damage variables require an accurate analytical model. Jiang and Wang [20] extended the
frequency sensitivity approach by eliminating that requirement. However, an optimization scheme is still needed to
estimate the unknown system matrices through an identified model using input–output measurement data.

This study focuses on the use of sensitivity analysis for resolving the problems of damage localization. Natural
frequencies are known to be successful in characterizing dynamical systems. Mode shapes, meanwhile, have been
considered effective in recognizing spatial change, since these shapes condense most of the deformation database of the
structure. Here, we use not only sensitivity of frequency, but also of mode shape, a subject which appears less developed in
the literature. A modal identification is not necessary in the procedure.

2. Sensitivity analysis for principal component analysis

The behavior of a dynamical system depends on many parameters related to material, geometry and dimensions.
The sensitivity of a quantity to a parameter is described by the first and higher orders of its partial derivatives with respect
to the parameter. Sensitivity analysis of modal parameters may be a useful tool for uncovering and locating damaged or
changed components of a structure. On one hand, we know that the dynamic behavior of a system is fully characterized by
its modal parameters which result from the resolution of an eigenvalue problem based on the system matrices (when a
model is available). On the other hand, principal component analysis (PCA) of the response matrix of the system is also a
way to extract modal features (i.e. principal directions) which span the same subspace as the eigenmodes of the system
[21]. The second approach based on PCA is used in this study to examine modal parameter sensitivities.

Let us consider the observation matrix Xm�N which contains the dynamic responses (snapshots) of the system where m

is the number of measured coordinates and N is the number of time instants. We will assume that it depends on a vector of
parameters p. The observation matrix X can be decomposed using Singular Value Decomposition (SVD):

X¼XðpÞ ¼URVT (1)

where U and V are two orthogonal matrices, whose columns represent, respectively, left and right singular vectors;
R contains singular values of descending importance: s14s24 � � �4sm.

A sensitivity analysis is performed here by taking the derivative of the observation matrix with respect to p:

@X

@p
¼
@U

@p
RVT
þU

@R
@p

VT
þUR

@VT

@p
(2)



ARTICLE IN PRESS

N. Viet Ha, J.-C. Golinval / Journal of Sound and Vibration 329 (2010) 4550–45664552
Through this equation, the sensitivity of the system dynamic response shows its dependence on the sensitivity of each
SVD term. So, the determination of @U=@p, @R=@p and @V=@p is necessary. Junkins and Kim [22] developed a method to
compute the partial derivatives of SVD factors. The singular value sensitivity and the left and right singular vector
sensitivity are simply given by the following equations:

@si

@pk
¼UT

i

@X

@pk
Vi,

@Ui

@pk
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Xm

j ¼ 1

ak
jiUj,
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@pk
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j ¼ 1

bk
jiVj (3)

The partial derivatives of the singular vectors are computed through multiplying them by projection coefficients. These
coefficients are given by Eq. (4) for the off-diagonal case and by Eq. (5) for the diagonal elements.
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The sensitivity analysis for PCA may also be developed in the frequency domain, e.g. by considering frequency response
functions (FRFs) [21]. As the dynamical system matrices depend on a vector of parameters p, the FRF matrix takes the form

Hðo,pÞ ¼ ½�o2MðpÞþ ioCðpÞþKðpÞ��1 (6)

where o represents the circular frequency. With regard to sensitivity analysis, the partial derivative of Eq. (6) with respect
to one parameter pk may be written [21]as follows:

@H

@pk
¼�Hðo,pÞ

@ð�o2Mþ ioCþKÞ

@pk
Hðo,pÞ ¼Hðo,pÞ o2 @M

@pk
�io @C

@pk
�
@K

@pk

� �
Hðo,pÞ (7)

Eq. (7) provides a way of determining the derivative of the FRF matrix needed for the sensitivity analysis by means of
the partial derivative of the system matrices.

Let us consider the FRFs for a single input at location s, and build a subset of the FRF matrix in Eq. (6):

Hs
ðoÞ ¼

h1ðo1Þ h1ðo2Þ . . . h1ðoNÞ

h2ðo1Þ h2ðo2Þ . . . h2ðoNÞ

. . . . . . . . . . . .

hmðo1Þ hmðo2Þ . . . hmðoNÞ

2
66664

3
77775 (8)

where m is the number of measured coordinates and N is the number of frequency lines.
This matrix is the frequency domain analog of the observation matrix X. The rows in Eq. (8) represent the responses at

the measured degrees of freedom (dofs), while the columns are ‘‘snapshots’’ of the FRFs at different frequencies.
We consider that this matrix depends on a given set of parameters. We can assess its principal components through SVD by
Eq. (1) where the left singular vectors give spatial information, the diagonal matrix of singular values shows scaling
parameters and the right singular vectors represent modulation functions depending on frequency. In other words, this
SVD separates information depending on space and on frequency.

The sensitivity of the ith principal components can be computed by Eqs. (3)–(5). First, we compute the SVD of the FRF
matrix in Eq. (8) for the set of responses and the chosen input location. Then, the partial derivatives of Eq. (8) are
determined using Eq. (7). For a particular input, only a subset of the derivatives in Eq. (7) is needed.

3. Damage localization based on sensitivity analysis of the FRF matrix

In the following, sensitivity analysis is used to resolve the problem of damage localization. We present now some
simplifications that may be carried out in experimental practice.

Giving the FRF matrix Hs for a single input at location s of the system and its SVD, the sensitivity computation of the
principal components (PCs) requires the partial derivatives @Hs=@pk which are a subset of @H=@pk. This quantity may be
assessed by Eq. (7) requiring the partial derivative of the system matrices with respect to system parameters. If the
parameter concerned is a coefficient ke of the stiffness matrix K, the partial derivatives of the system matrices are selected
such that @M=@pk and @C=@pk equal zero and @K=@pk ¼ @K=@ke.

Although only a subset of @H=@pk is needed for a particular input s, i.e. @Hs=@pk, which corresponds to the sth column of
@H=@pk, the calculation of Eq. (7) demands the whole matrix H, which turns out to be costly. However, we can compute
@Hs=@pk by measuring only some columns of H, as explained below.
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We recall that our parameter of interest is a coefficient ke of the stiffness matrix K. Eq. (6) shows that FRF matrices are
symmetric if system matrices are symmetric. In experiment, the number of degrees of freedom (dof) equals the number of
response sensors. So, the FRF matrix has the same size as the number of sensors. Let us consider for instance a structure
instrumented with 4 sensors. The FRF matrix takes the symmetrical form

H oð Þ ¼

a b c d

b e f g

c f h i

d g i k

2
66664

3
77775 (9)

Assuming that ke accords to the second dof only, we have @M=@pk ¼ 0; @C=@pk ¼ 0 and

@K

@pk
¼
@K

@ke
¼

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775 (10)

Eq. (7) allows us to deduce the partial derivative of the FRF matrix:

@H

@pk
¼�Hðo,pÞ

@K

@pk
Hðo,pÞ ¼�

½ b e f g �b

½ b e f g �e

½ b e f g � f

½ b e f g �g

2
666664

3
777775 (11)

To compute the sensitivity of Hs, only the s th column of @H=@pk is needed, which is written in Eq. (12) in setting
Hke
¼ ½ b e f g �T . This relies entirely upon the column corresponding to ke in the FRF matrix in Eq. (9).

@Hs

@pk
¼�Hke

Hke ,s (12)

Hke ,s is the s th element of the vector Hke
. Thus, the sensitivity of Hs with respect to ke does not involve the entire matrix H;

only the column relating to ke is needed.

4. Localization indicators

When @Hs=@pk has been computed, the sensitivity of principal components can be determined next using Eqs. (3)–(5).
The sensitivities of the left singular vectors are good candidates for resolving localization problems of linear-form
structures, e.g. chain-like or beam-like structures. In each working condition of the system, we can compute the sensitivity
@Ui=@pk. The reference state is denoted by @Ui

R=@pk, and the deviation of the current condition may be assessed as follows:

D¼Dð@Ui=@pkÞ ¼ @Ui=@pk�@UR
i =@pk (13)

For structure that has several spans, a normalized deviation Dnorm can be used to count the influence of different
magnitudes of the sensitivity vector in the spans. It is computed in accordance with the span:

Dnorm
t ¼

Dt

normð@UR
i =@pkÞt

(14)

where Dt contains the elements according to span t of vector D, ð@UR
i =@pkÞt describes the sensitivity elements in span t in

the reference state and normðUÞ is an operator giving the maximal singular value of a vector.
Other indicators may be utilized to better locate dynamic change, such as

dI
j ¼

1

r
ðD9j�D9j�1Þ and dII

j ¼
1

r2
ðD9jþ1�2D9jþD9j�1Þ (15)

where r is the average distance between measurement points. The indicators dI and dII , effectively comparable with the
first and second derivatives of vector D, may allow the maximization of useful information for damage localization.

The central difference approximation dII in Eq. (15) is widely identified in the literature of damage localization, e.g.
in [14,15]. However, the previous methods compared mode shape vectors or FRF data. In this study, the sensitivity of
singular vectors is the subject under examination.

It should be remarked that a zero-mean normalization is generally applied to the data in classical PCA technique.
However, such normalization can be avoided in the present case where the localization indicators are not shown by
statistical data; they are characterized by the principal components vectors and their derivatives. This is illustrated in Fig. 1
in a two-dimensional case where two features y1 and y2 are considered. The features in data set S1 are distributed around
their geometric centre—point O1 and if a zero-mean normalization is achieved, they are represented by data set S0. The
application of PCA to S1 gives two principal components PC 1 and PC 2, which are just the principal components of set S0.
In our application, a health state of the dynamic structure is shown by the vectors of principal components and their
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Fig. 1. Geometric interpretation of PCA.

Table 1
Geometrical and mechanical properties of the cantilever beam.

Length (mm) Width (mm) Thickness (mm) Young’s modulus (N/m2) Density (kg/m3)

700 14 14 2.05e11 7850

Fig. 2. Cantilever beam.
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sensitivities; and the localization is achieved by comparing the last vectors of two different health states. Like that, a zero-
mean normalization is not necessary for the data preprocessing. However, in order to facilitate the comparison between
two states, the unit-norm normalization is implemented to the sensitivity vectors, i.e.

@Ui=@pk ¼
@Ui=@pk

normð@Ui=@pkÞ
(16)

This normalization step provides for more meaningful and accurate comparison between different conditions.

5. Application to damage localization

5.1. Numerical example of a cantilever beam

Let us examine a steel cantilever beam (Euler–Bernoulli theory) with a length of 700 mm, and a square section of
dimension 14 mm that the geometrical and mechanical properties are listed in Table 1. The beam is modeled by 20 finite
elements as illustrated in Fig. 2. The input location is chosen at node 7For the purpose of this study, the beam is supposed
to be submitted to an impact force of 70 N at node 6, and the snapshot matrix is assembled from FRFs corresponding to the
vertical displacements at nodes 1–20. Newmark’s algorithm was used for computing the dynamic responses and the time
step was 0.0002 s. The FRFs were considered in the frequency range from 0 to 165 Hz at intervals of 1 Hz.

We model the damage by a stiffness reduction of a beam element. Four states are examined: the reference (healthy)
state, and 3 levels of damage (L1, L2 and L3) induced by a reduction of stiffness of, respectively, 10%, 20% and 40%. The
damage is assumed to occur in element 12. Note that the maximum deviations on the first three frequencies from the
reference state are 0.70%, 1.41% and 2.81% for the 3 levels, respectively. We notice the influence of some susceptible factors
by achieving the damage localization below:
�
 Influence of the system parameter in the computation of sensitivity: For illustration, sensitivity analysis results are shown in
Figs. 3–5 according to several system parameters. Fig. 3 shows the sensitivity differences Dð@U1=@pkÞof the first left singular
vector with respect to the coefficients associated to the 3th, 8th, 15th and 20th dofs, respectively, in the stiffness matrix. The
derivatives of those vectors: dI , dII are shown in Figs. 4 and 5. These figures show that the considered parameters present
similar results. It is observed that the Dð@U1=@pkÞ curves are discontinuous at dofs 11 and 12. Index dI shows a discontinuity
with large variations around element 12 and moreover, index dII points out exactly the position of the damaged element.
In general, a parameter near a support may present less clear detection with respect parameters in other position, above all
for small damage, because the corresponding responses can be not strong and less sensitive to the damage occurred in the
structure.
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Fig. 3. Dð@U1=@pkÞ with pk=k3, k8, k15, k20, respectively, for three damage levels: reduction of stiffness of 10%, 20% and 40% in element 12.
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Fig. 4. dI with pk=k3, k8, k15, k20, respectively, for three damage levels.
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Fig. 5. dII with pk=k3, k8, k15, k20, respectively, for three damage levels.
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Fig. 6. Three levels of damage: even reduction of stiffness of 10%, 20% and 40% in elements 12, 13 and 14.
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The method reveals itself robust when damage develops in several elements. Like as damage in single element, varied
system parameters show similar detection. So, for the sake of concision, we present now the damage localization according
to one parameter. Localization results are shown in Figs. 6 and 7 in two different cases of damage. We note that the indexes
do not indicate the same level of damage in the damaged elements. However, the damage locations are accurately indicated.
The difference in magnitude is due to unequal sensitivities for various damage locations, as discussed in [13].

�
 Influence of noise: In order to examine the robustness of the proposed method, the time responses (vertical

displacements) are perturbed by adding 5% of noise. Indicators dIand dII , which appear the most sensitive to damage in
this cantilever beam, are presented. Fig. 8 localizes damage occurred in element 12 and Fig. 9 for damage in element 15.
It shows that levels L2 and L3 are always detected, however with the noise, the lowest damage-level L1 is not identified.

�
 Influence of number of sensors: Let us assume the full range of sensors is not available, the measurements are

implemented in fewer locations that is usual in the practical application. Now, we reconsider the case of damage in
element 12—element between dofs 11 and 12 of the initial model in Fig. 2; however, only seven sensors are available.
This fact is illustrated, respectively, on the beam structure in Fig. 10a. Like that, the damaged element lays between
sensor nos. 4 and 5, it can be seen that the damage is pointed out exactly in Fig. 10b, c.



ARTICLE IN PRESS

0 4 8 12 16 20

-10

-8

-6

-4

-2

0

x 10-3 Δ (∂U1/∂k15)

Location

L1
L2
L3

0 4 8 12 16 20

-4

-2

0

2

dI index

Location

L1
L2
L3

0 4 8 12 16 20
-1

0

1

2

3
dII index

Location

x 10-3 x 10-3

Fig. 7. Three levels of damage: even reduction of stiffness of 10%, 20% and 40% in elements 7 and 16.
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Fig. 8. Three damage levels in element 12: reduction of stiffness of 10%, 20% and 40%; 5% of noise.
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Fig. 9. Three damage levels in element 15: reduction of stiffness of 10%, 20% and 40%; 5% of noise.
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For a localization more detailed, a deductive technique is proposed as follows. Based on the real measurements, indexes
in other positions between the available sensors can be deducted. For example, the vector of sensitivity computed from
the real measurements can be generated by interpolation; this is illustrated in Fig. 11a that examines 19 points
including 7 points instrumented by sensors. According to those 19 points, the damage element corresponds to points 10
and 11. It shows that the localization is correctly indicated when positions around the damage element are detected in
Fig. 11b and c.
Other examples are also presented in Figs. 12 and 13, when the damage occurs in element 14. Fig. 12 shows the
localization based on just 7 sensors and Fig. 13 gives the deducted resolution.
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Fig. 10. Localization of damage in element 12 through 7 sensors (shown by dots in the beam instrumented by few sensors). (a) Damaged element and

sensor instrumentation, (b) dI index and (c) dII index.
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Fig. 11. Localization of damage in element 12, represented according to 19 points in the generated sensitivity vector that the measurements were

achieved in points 1, 4, 7, 10, 13, 16 and 19 (picture a, few sensors). (a) Position of points measured and points deducted, (b) dI index and (c) dII index.
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Fig. 12. Localization of damage in element 14 through 7 sensors (shown by dots in the beam instrumented by few sensors). (a) Damaged element and

sensor instrumentation, (b) dI index and (c) dII index.
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The above examples show that when just few sensors are available, the result of damage localization is satisfactory by
both dI and dII , if there is a sensor instrumented very closely to the damaged element. In the next, another case is
examined when the sensor are not adjoining to the damaged element, as the case shown in Fig. 14a. In Fig. 14b, c, the
highest values are revealed in locations 3 and 4 for index dI and in locations 2 and 4 for index dII. That is a reasonable
detection because those locations are near the damage, which is actually between sensors 3 and 4. Regarding the
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Fig. 13. Localization of damage in element 14, represented according to 19 points in the generated sensitivity vector that the measurements were

achieved in points 1, 4, 7, 10, 13, 16 and 19 (picture a, few sensors). (a) Position of points measured and points deducted, (b) dI index and (c) dII index.
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Fig. 14. Localization of damage in element 10 through 7 sensors (shown by dots in the beam instrumented by few sensors). (a) Damaged element and

sensor instrumentation, (b) dI index and (c) dII index.
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deductive technique, its results are shown in Fig. 15. As presented by Fig. 15a, the damaged element corresponds to
points 8 and 9 in the generated range. Indexed dIand dII can point out these locations, however, their values do not show
a clear preponderance with respect to some other locations, e.g. points 2–4.
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Through the above examples, we remark that the damage can be still localized when the number of sensor is limited.
Localization more detailed can be realized by the deductive technique. The last technique is simple but its drawback is
also revealed in the case that the sensors are instrumented far from the damage element.

5.2. Experiments involving a mass–spring system (Ref. [23])

The next example involves the system of eight degrees of freedom (8-dofs) shown in Fig. 16 and for which data are
available in the site of Los Alamos National Laboratory (LANL) [23]. The system comprises 8 translating masses connected
by springs. In the undamaged configuration, all the springs have the same constant: 56.7 kN/m. Each mass weighs 419.5 g;
the weight is 559.3 g for the mass located at the end which is attached to the shaker.

The acceleration responses and also the FRFs of all the masses are measured with the excitation force applied to
mass 1—the first mass at the right-hand end (Fig. 16). The FRFs are assembled so as to localize the damage by the proposed
method. Frequency lines are selected from 0 to 55 Hz at intervals of 0.1562 Hz. Two types of excitation are produced:
hammer impact and random excitation using a shaker.

First, several experiments were implemented with the system in the healthy state (denoted ‘‘H’’) and in the
damage state (denoted ‘‘D’’) for impact case. The damage was simulated by a 14% stiffness reduction in spring 5 (between
masses 5 and 6). As the excitation was applied only on mass 1, the partial derivative was taken with respect to the first dof
(Eqs. (9)–(12)). The vectors Dð@U1=@k1Þ are shown in Fig. 17, where the healthy states are denoted ‘‘H’’ and the damaged
states ‘‘D’’. Indexes dIand dII are presented respectively in Fig. 18. All theses vectors mark a clear distinction between the
Fig. 16. Schema of the eight degrees of freedom system.
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Fig. 17. Dð@U1=@k1Þ by impact excitation.
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Fig. 18. dI and dII by impact excitation.
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Fig. 19. dI and dII by random excitation.

Fig. 20. Elevation view of the I-40 bridge.
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two groups—healthy and damaged and can be candidate for damage localization, the indexes of dI and dII appear more
impressive. Healthy states show regular indexes in all positions, so they do not display any abnormality. By contrast, all the
‘‘damaged’’ curves reveal a high peak in point 6 or 5 where the slope is the most noticeable. The damage is also localized for
the random case in Fig. 19 through dI and dII indexes.
5.3. Experiments in a real bridge case [Ref. Los Alamos]

In this section, the case of a real bridge is studied. It has been examined by many authors in the literature [15,24,11] and
consists of the I-40 bridge in New Mexico, which was razed in 1993. Vibration response data of the bridge were recorded
for healthy and damaged states. The data used in this example are provided by LANL [23].

The I-40 bridge was composed of three continuous spans being supported by concrete piers and abutment (Fig. 20).
The damages were introduced into the middle span of the North plate girder with intention to simulate fatigue cracking
that has been observed in plate-girder bridges. Two rows of 13 accelerometers were used for the vibration measurements
in the North and South girders and equally spaced within a span (Fig. 21). Four levels of damage, denoted from E1 to E4
with increasing degrees were performed. As noticed in [24], based on natural frequencies and mode shapes, the dynamic
properties have no change until the final level of damage is introduced. Based on FRF curvature method, Sampaio et al. [15]
localized the damage according to all of levels with unequal effects. Bayissa et al. [11] used the continuous wavelet
transform (CWT) and the zeroth-order moment (ZOM) in localizing the damage of levels E3 and E4.

Since the FRF matrix is available for the input according to S3 in Fig. 21, the parameter chosen for the purpose of
damage localization in our sensitivity analysis is the coefficient k3 corresponding to the input. The FRFs measured on the
Fig. 21. Disposition of the accelerometers and damage location.
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South girder are used. The frequency range (1.8–3 Hz) is selected to eliminate the low-frequency noise and the higher
frequency modes.

The left picture of Fig. 22 presents the sensitivity vectors @U1=@k3 in two conditions: no damage and damage at the final
level—E4. In this picture, the end points delimiting the spans correspond to locations 1, 5, 9 and 13 where the sensitivity is
close to zero. It can be observed that the highest sensitivity appears exactly at the position associated to the parameter—k3,
which corresponds also to the middle point of the first span. The difference D between the two states (undamaged and
damaged) is also represented in the right picture of Fig. 22. It shows that the largest deviation occurs in the middle span at
locations 6, 7 and 8. The damage can be also pointed out by indexes dI and dII , as presented Fig. 23. The normalized
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Fig. 23. dI and dII , damage E4.
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Fig. 25. Damage localization for three levels of damage (a) E3, (b) E2 and (c) E1.

Table 2
The first two resonant frequencies from undamaged and damaged forced vibration tests [4].

Undamaged E1 E2 E3 E4

f1 (Hz) 2.48 2.52 2.52 2.46 2.30

f2 (Hz) 2.96 3.00 2.99 2.95 2.84
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deviation Dnorm defined by Eq. (14) is also given in Fig. 24 in terms of normalized absolute values so that it can be
compared to results reported previously (e.g. in [15]). It shows that the localization in Fig. 24 appears the most clearly.

Next the lower levels of damage E3, E2 and E1 are examined successively and the results are presented in Fig. 25a�c,
respectively. The best localization result is attained for damage state E2. Regarding to damage state E3, the index is higher
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at locations 8 and 7 as expected but is also points out a lesser degree at locations 11, 12. This problem can be also noticed in
previous works based on the FRF curvature method [15]. According to the results of reference [24] given in Table 2, it can
be seen that the first two resonant frequencies of state E3 are the closest to the frequencies identified in the undamaged
state. Finally, the lowest level of damage E1 is treated in Fig. 25c which also shows the principal peak in location 7 but
again another peak at location 12.

So, through this example, the proposed method shows also robust in localization of damage, particularly the damages
are not well remarked by resonant frequencies monitoring. The damage location is determined in all conditions; however
the effectiveness of the detection is affected by the damage degree.

6. Conclusions

The sensitivity computation of principal components by analytical methods has been verified in [21] in both the time
domain and the frequency domain. The contribution of the present study is its application of sensitivity analysis in the
frequency domain to the problem of damage localization. Damage localization is achieved as a result of the difference in
principal component sensitivity between the reference and the damaged states. The method has proved efficient in
damage localization in circumstances where either only one or where several elements are involved.

Several localization indexes of simple and quick computation are proposed for identifying damage. The simultaneous
use of those indexes allows a decisive detection. The damage location can be identified by observing a sharp change or high
peak in the representation of the localization indicators. In the above examined-examples, the damage in the 8-dofs system
and the bridge I40 can be detected from D @Ui=@pk

� �
; but in the cantilever beam, the localization is more adequate by dI and

dII. Furthermore, the influences of some features as noise, number of sensor and choice of parameter were considered.
As sensitivity computation from FRFs is easy, the technique should be suitable for online monitoring. It does not require

the analytical model, or an achievement of modal analysis for the identification of mode shapes or resonant frequencies.
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